Расчет системы отопления (Часть 5 — Гидравлический расчет трубопроводов)

Содержание
  1. Что рассчитывается
  2. D ̅ = d ,/d ,
  3. D ρ тр = λ· l / d · ρ · v 2 /2
  4. D , = d 0 αt ,
  5. D p ж = ζρ v 2 /2 .
  6. D, = 4s/ п ,
  7. G = 0.57 0.043/(1.1 – n) ,  где:  n = s 2 /s 1 .
  8. H o = p α – d p ’/ ρg
  9. Re = vd/ν
  10. Ζ = a / re ζ l
  11. Ζ o = (1/g – 1) 2 ,
  12. Ζ д = (1 /n д g – 1) 2 ,
  13. Λ = 64/re .
  14. Λ = a/re ,
  15. Для турбулентного движения: l вл / d = 12/√λ – 50 ,
  16. Дополнительное покрытие трубопровода
  17. Качество транспортируемой среды
  18. Линия отбора проб
  19. Местные потери давления в трубах .
  20. Надежность трубопроводов
  21. Обводной трубопровод для оборудования/приборов
  22. Оптимальная скорость потока для различных трубопроводных систем
  23. Переполнение резервуара
  24. Потери напора на трение .
  25. Поток горячей жидкости
  26. Поток жидкости самотеком
  27. Поток шлама
  28. Проектирование трубопроводов
  29. Ремонт трубопроводов
  30. Температурное удлинение трубопровода
  31. Типы магистральных труб
  32. Транспортируемые рабочие среды
  33. Формулы для определения размеров трубопровода
  34. Циркуляция охлаждающей жидкости

Что рассчитывается

Выполняется данная процедура в отношении нижеперечисленных рабочих параметров инженерной коммуникации.

  1. Расход жидкости на отдельных сегментах водопровода.
  2. Скорость потока рабочей среды в трубах.
  3. Оптимальный диаметр водопровода, который обеспечивает приемлемое падение напора.

Рассмотрим методику расчёта этих показателей подробно.

D ̅ = d ,/d ,

Где:

  • Dэ – эквивалентная равномерно-зернистая шероховатость (то есть такая высота неровностей, которые образовани песчинками одинакового размера, которая при расчете дает одинаковое с действительной шероховатостью значение коэффициента гидравлического трения).

При ламинарном режиме течения жидкости коэффициент гидравлического трения можно рассчитать по формуле:

D ρ тр = λ· l / d · ρ · v 2 /2

Где:

  • l – коэффициент гидравлического трения; 
  • l –длина трубопровода; 
  • d – диаметр трубопровода; 
  • r – плотность жидкости; 
  • V – средняя скорость течения жидкости.

Коэффициент гидравлического трения будет зависеть от режима движения жидкости, значения критерия Рейнольдса:

D , = d 0 αt ,

Где:

  • где Dо – абсолютная шероховатость новых труб, мм; 
  • Dt – абсолютная шероховатость через t лет эксплуатации, мм;
  • a – коэффициент, характеризующий быстроту возрастания шероховатости, мм/год.

D p ж = ζρ v 2 /2 .

Значения коэффициентов местных сопротивлений V  зависят от конфигурации местного сопротивления и режима течения жидкости перед ним.

При резком сужении трубопровода (резком изменении площади проходного сечения от S1 до S2) коэффициент местного сопротивления рассчитывается по формуле:

D, = 4s/ п ,

  • где S – площадь поперечного сечения трубы; П – полный смоченный периметр трубы.

Коэффициент гидравлического трения при ламинарном течении в трубах различной формы можно рассчитать по формуле

G = 0.57 0.043/(1.1 – n) ,  где:  n = s 2 /s 1 .

Коэффициент местного сопротивления диафрагмы, которая располагается внутри трубы постоянного сечения (отнесенный к сечению трубопровода):

H o = p α – d p ’/ ρg

  • где Dp’ – потеря давления на участке от напорного резервуара до верхней точки сифона.

Минимально допустимое давление в верхней точке сифона должно быть выше давления насыщения при данной температуре.

Пропускная способность трубопроводов в период эксплуатации снижается. Вследствие коррозии и образования отложений в трубах шероховатость их увеличивается, что в первом приближении можно оценить по формуле:

Re = vd/ν

А так же коэффициент гидравлического трения будет зависеть от состояния стенок трубы, которое характеризуется относительной шероховатостью:

Ζ = a / re ζ l

  • где ζL – значение коэффициента местного сопротивления в квадратичной области; Re – число Рейнольдса, отнесенное к нестесненному сечению трубопровода.

В случаях, когда расстояние между отдельными местными сопротивлениями довольно велико для того, чтобы искажение эпюры скоростей, вызванное одним из них, не сказывалось на следующем, потери давления во всех местных сопротивлениях суммируются. Для этого необходимо, чтобы местные сопротивления отстояли друг от друга на расстояние, превышающее lвл, определяемое по формулам:

Ζ o = (1/g – 1) 2 ,

  • где e – коэффициент сжатия струи, который можно определить по формуле А.Д. Альтшуля:

Ζ д = (1 /n д g – 1) 2 ,

  • где nд = So / S – отношение площади отверстия диафрагмы So к площади сечения трубы S.

При движении жидкости с малыми числами Рейнольдса коэффициенты местных сопротивлений ориентировочно определяют по формуле А.Д. Альтшуля:

Λ = 64/re .

При турбулентном режиме течения жижкости весь диапазон значений чисел Рейнольдса, в зависимости от относительной шероховатости, необходимо разделить на области, каждой из которых будет соответствовать своя формула для расчета коэффициента гидравлического трения:

область гидравлически гладких труб 2300 ≤ Re ≤ 10 √D:

1. λ = 0.3164/Re0.25 – формула Блазиуса;

2. 10/D̅  ≤ Re ≤ 500√D – переходная область;

3. λ = 0.11 · (D̅  68/Re)0.25  – формула А.Д. Альтшуля;

4. Re > 500√D – квадратичная область;

5. λ = 0.11 · D-0.25  – формула Б.Л. Шифринсона.

Если жидкость будет протекать по трубам, форма поперечного сечения которых не будет круглой, то в приведенных выше формулах будет использоваться вместо d эквивалентный диаметр:

Λ = a/re ,

  • где А – коэффициент, численное значение которого зависит от формы поперечного сечения трубы.

Сифон – это соединяющий два резервуара трубопровод, часть которого находится выше уровня жидкости в напорном резервуаре. Допустимое возвышение верхней точки сифона вычисляют по формуле

Для турбулентного движения: l вл / d = 12/√λ – 50 ,

  • где l – коэффициент трения трубы, на которой расположено местное сопротивление;

Дополнительное покрытие трубопровода

Коррозионно-стойкое покрытие наносят на наружную часть большинства труб для предотвращения разрушающего действия коррозии со стороны внешней среды. В случае перекачивая коррозионных сред, защитное покрытие может быть нанесено и на внутреннюю поверхность труб. Перед вводом в эксплуатацию все новые трубы, предназначенные для транспортировки опасных жидкостей, проходят проверку на дефекты и протечки.

Качество транспортируемой среды

Физические свойства и параметры транспортируемых сред во многом определяют проектные и рабочие параметры трубопровода. Удельный вес, сжимаемость, температура, вязкость, точка застывания и давление паров – основные параметры рабочей среды, которые необходимо учитывать.

Удельный вес жидкости – это ее вес на единицу объема. Многие газы транспортируются по трубопроводам под повышенным давлением, а при достижении определенного давления некоторые газы даже могут подвергаться сжижению. Поэтому степень сжатия среды является критичным параметром для проектирования трубопроводов и определения пропускной производительности.

Температура косвенно и напрямую оказывает влияние на производительность трубопровода. Это выражается в том, что жидкость увеличивается в объеме после увеличения температуры, при условии, что давление остается постоянным. Понижение температуры может также оказать влияние как на производительность так и на общий КПД системы.

Обычно, когда температура жидкости понижается, это сопровождается увеличением ее вязкости, что создает дополнительное сопротивление трения по внутренней стенке трубы, требуя больше энергии для перекачивания одинакового количетсва жидкости. Очень вязкие среды чувствительны к перепадам рабочих температур.

Как только температура среды опускается ниже точки потери текучести, эксплуатация трубопровода становится невозможной, и для возобновления его функционирования предпринимаются некоторые опции:

  • нагревание среды или теплоизоляция труб для поддержания рабочей температуры среды выше ее точки текучести;
  • изменение химического состава среды перед попаданием в трубопровод;
  • разбавление перемещаемой среды водой.

Линия отбора проб

Обычно небольшое количество жидкости отбирается для анализа, чтобы определить ее состав. Отбор может производиться на любой стадии процесса для определения состава сырья, промежуточного продукта, готового продукта или же просто транспортируемого вещества, такого как сточные воды, теплоноситель и т.д.

Например, для газов в условиях повышенного давления достаточно небольших трубопроводов с клапанами для отбора нужного количества образцов. Увеличение диаметра линии отбора проб позволит снизить долю отбираемой для анализа среды, но такой отбор становится сложнее контролировать. В то же время небольшая линия отбора проб плохо подходит для анализа различных суспензий, в которых твердые частицы могут забивать проточную часть.

При подборе размера трубопровода для отбора проб обычно учитывают:

  • характеристики жидкости, предназначенной для отбора;
  • потери рабочей среды при отборе;
  • требования безопасности во время отбора;
  • простота эксплуатации;
  • расположение точки отбора.

Местные потери давления в трубах .

Местные сопротивления, к которым относится арматура, фасонные части трубопроводов и прочее оборудование, могут вызывать изменения величины и (или) направления скорости движения жидкости на определенных участках трубопровода, что неизбежно приводит к потерям давления в этих трубах. Потери давления определяют по формуле Вейсбаха:

Надежность трубопроводов

Надежность в конструировании трубопроводов обеспечивается соблюдением надлежащих норм проектирования. Также обучение персонала является ключевым фактором обеспечения длительного срока службы трубопровода и его герметичности и надежности. Постоянный или периодический контроль работы трубопровода может быть осуществлен системами контроля, учёта, управления, регулирования и автоматизации, персональными приборами контроля на производстве, предохранительными устройствами.

Обводной трубопровод для оборудования/приборов

Оборудование и приборы, особенно те, которые могут создавать значительные перепады давления, то есть теплообменники, регулирующие клапаны и прочее, оснащают обводными трубопроводами (для возможности не прерывать процесс даже во время технических работ по обслуживанию). Такие трубопроводы обычно имеют 2 отсечных клапана, установленных в линию установки, и клапан, регулирующий поток параллельно к этой установке.

При нормальной работе поток жидкости, проходя через основные узлы аппарата, испытывает дополнительное падение давления. В соответствии с этим рассчитывается давление нагнетания для него, создаваемое подсоединенным оборудованием, например центробежным насосом. Насос подбирается на основе общего перепада давления в установке.

Во время движения по обводному трубопроводу этот дополнительный перепад давления отсутствует, в то время как работающий насос нагнетает поток прежней силы, согласно своим рабочим характеристикам. Чтобы избежать различия в характеристиках потока через аппарат и обводную линию, рекомендуется использовать обводную линию меньшего размера с регулировочным клапаном, чтобы создать давление, эквивалентное основной установке.

Оптимальная скорость потока для различных трубопроводных систем

Оптимальный размер трубы выбирается из условия минимальных затрат на перекачивание среды по трубопроводу и стоимости труб. Однако необходимо учитывать также ограничения по скорости. Иногда, размер трубопроводной линии должен соответствовать требованиям технологического процесса. Так же часто размер трубопровода связан с перепадом давления. В предварительных проектных расчетах, где потери давления не учитываются, размер технологического трубопровода определяется по допустимой скорости.

Если в трубопроводе имеются изменения в направлении потока, то это приводит к значительному увеличению местных давлений на поверхности перпендикулярно направлению потока. Такого рода увеличение – функция скорости жидкости, плотности и исходного давления. Так как скорость обратно пропорциональна диаметру, высокоскоростные жидкости требуют особого внимания при выборе размера и конфигурации трубопровода.

Переполнение резервуара

Резервуары оснащают трубами для перелива по следующим причинам:

  • избегание потери жидкости (избыток жидкости поступает в другой резервуар, а не выливается за пределы изначального резервуара);
  • недопущение утечек нежелательных жидкостей за пределы резервуара;
  • поддержание уровня жидкости в резервуарах.

Во всех вышеупомянутых случаях трубы для перелива рассчитаны на максимально допустимый поток жидкости, поступающий в резервуар, независимо от расхода жидкости на выходе. Другие принципы подбора труб аналогичны подбору трубопроводов для самотечных жидкостей, то есть в соответствии с наличием доступной вертикальной высоты между начальной и конечной точкой трубопровода перелива.

Самая высокая точка трубы перелива, которая также является его начальной точкой, находится в месте подсоединения к резервуару (патрубок перелива резервуара) обычно почти на самом верху, а самая низкая конечная точка может быть около сливного желоба почти у самой земли. Однако линия перелива может заканчиваться и на более высокой отметке. В этом случае имеющийся дифференциальный напор будет ниже.

Потери напора на трение .

Всем известно, что при движении жидкости по трубопроводу возникают постери напора на трение. В случае, когда движении жидкости в трубах равномерное, то потери давления на трение как при ламинарном, так и при турбулентном режимах движения можно рассчитать по формуле Дарси–Вейсбаха:

Поток горячей жидкости

В технологических установках обычно сталкиваются с различными проблемами при работе с горячими или кипящими средами. В основном причина заключается в испарении части потока горячей жидкости, то есть фазовом превращении жидкости в пар внутри трубопровода или оборудования. Типичный пример – явление кавитации центробежного насоса, сопровождаемое точечным вскипанием жидкости с последующим образованием пузырьков пара (паровая кавитация) или выделением растворенных газов в пузырьки (газовая кавитация).

Трубопровод большего размера предпочтительнее из-за снижения скорости потока в сравнении с трубопроводом меньшего диаметра при постоянном расходе, что обуславливается достижением более высокого показателя NPSH на всасывающей линии насоса. Также причиной возникновения кавитации при потере давления могут быть точки внезапной смены направления потока или сокращения размера трубопровода.

Поток жидкости самотеком

Расчет размера трубопровода в случае потока, движущегося самотеком, достаточно сложен. Характер движения при такой форме потока в трубе может быть однофазным (полная труба) и двухфазным (частичное заполнение). Двухфазный поток образуется в том случае, когда в трубе одновременно присутствуют жидкость и газ.

В зависимости от соотношения жидкости и газа, а также их скоростей, режим двухфазного потока может варьироваться от пузырькового до дисперсного.

Движущую силу для жидкости при движении самотеком обеспечивает разность высот начальной и конечной точек, причем обязательным условием является расположение начальной точки выше конечной. Иными словами разность высот определяет разность потенциальной энергии жидкости в этих положениях. Этот параметр также учитывается при подборе трубопровода.

В случае если конечная точка подсоединена к системе под давлением, например дистилляционной колонне, необходимо вычесть эквивалентное давление из имеющейся разницы в высоте, чтобы оценить реально создаваемое эффективное дифференциальное давление. Также если начальная точка трубопровода будет под вакуумом, то его влияние на общее дифференциальное давление также должно быть учтено при выборе трубопровода.

Поток шлама

В случае горной промышленности, руда обычно добывается в труднодоступных участках. В таких местах, как правило, нет железнодорожного или дорожного сообщения. Для таких ситуаций гидравлическая транспортировка сред с твердыми частицами рассматривается как наиболее приемлемая, в том числе и в случае расположения горноперерабатывающих установок на достаточном удалении.

Шламовые трубопроводы используются в различных промышленных областях для транспортировки твердых сред в дробленом виде вместе с жидкостью. Такие трубопроводы зарекомендовали себя как наиболее экономически выгодные по сравнению с другими методами транспортировки твердых сред в больших объемах. Помимо этого к их преимуществам можно отнести достаточную безопасность из-за отсутствия нескольких видов транспортировки и экологичность.

Суспензии и смеси взвешенных веществ в жидкостях хранятся в состоянии периодического перемешивания для поддержания однородности. В противном случае происходит процесс расслоения, при котором взвешенные частицы, в зависимости от их физических свойств, всплывают на поверхность жидкости или оседают на дно.

Снижение скорости потока при транспортировке взвешенных в жидкости частиц не желательно, так как в потоке может начаться процесс разделения фаз. Это может привести к закупориванию трубопровода и изменению концентрации транспортируемого твердого вещества в потоке. Интенсивному перемешиванию в объеме потока способствует турбулентный режим течения.

С другой стороны, чрезмерное уменьшение размеров трубопровода также часто приводит к его закупорке. Поэтому выбор размера трубопровода – это важный и ответственный шаг, требующий предварительного анализа и расчетов. Каждый случай должен рассматриваться индивидуально, поскольку различные шламы ведут себя по-разному на различных скоростях жидкости.

Проектирование трубопроводов

При проектировании трубопроводов за основу берутся следующие основные конструктивные параметры:

  • требуемая производительность;
  • место входа и место выхода трубопровода;
  • состав среды, включая вязкость и удельный вес;
  • топографические условия маршрута трубопровода;
  • максимально допустимое рабочее давление;
  • гидравлический расчет;
  • диаметр трубопровода, толщина стенок, предел текучести материала стенок при растяжении;
  • количество насосных станций, расстояние между ними и потребляемая мощность.

Ремонт трубопроводов

В ходе эксплуатации трубопровода в нем могут возникать различного рода утечки, требующие немедленного устранения для поддержания работоспособности сисетмы. Ремонт магистрального трубопровода может быть осуществлен несколькими способами. Это может быть как замена целого сегмента трубы или небольшого участка, в котором возникла утечка, так и наложение заплатки на существующую трубу.

Первым этапом ремонтных работ является определение местоположения участка трубы, требующего вмешательства. Далее в зависимости от типа трубопровода определяется перечень необходимого оборудования и мероприятий, необходимых для устранения утечки, а также проводится сбор необходимых документов и разрешений, если подлежащий ремонту участок трубы находится на территории другого собственника.

Так как большинство труб расположено под землей, может возникнуть необходимость извлечения части трубы. Далее покрытие трубопровода проверяется на общее состояние, после чего часть покрытия удаялется для проведения ремонтных работ непосредсвтенно с трубой. После ремонта могут быть проведены различные проверочные мероприятия: ультразвуковое испытание, цветная дефектоскопия, магнитно-порошковая дефектоскопия и т.п.

Хотя некоторые ремонтные работы требуют полного отключения трубопровода, часто бывает достаточно только временного перерыва в работе для изолирования ремонтируемого участка или подготовки обводного пути. Однако в большенстве случаев ремонтные работы проводят при полном отключении трубопровода. Изолирование участка трубопровода может осуществляться с помощью заглушек или отсечных клапанов.

Температурное удлинение трубопровода

Когда трубопровод находится под давлением, вся его внутренняя поверхность подвергается воздействию равномерно распределённой нагрузки, отчего возникают продольные внутренние усилия в трубе и дополнительные нагрузки на концевые опоры. Температурные колебания также оказывают воздействие на трубопровод, вызывая изменения в размерах труб.

Усилия в закрепленном трубопроводе при колебаниях температур могут привысить допустимое значение и привести к избыточному напряжению, опасному для прочности трубопровода как в материале труб, так и во фланцевых соединениях. Колебание температуры перекачиваемой среды также создает температурное напряжение в трубопроводе, которое может передаться на арматуру, насосную станцию и пр. Это может повлечь за собой разгерметизацию стыков трубопроводов, выход из строя арматуры или дргуих элементов.

Типы магистральных труб

Магистральные трубы изготавливают сварными или бесшовными. Бесшовные стальные трубы изготавливают без продольных сварных швов стальными отрезками с тепловой обработкой для достижения желаемого размера и свойств. Сварная труба изготавливается при использовании нескольких производственных процессов. Эти два типа отличаются друг от друга количеством продольных швов в трубе и типом используемого сварочного оборудования. Стальная сварная труба – наиболее часто используемый тип в нефтехимической области применения.

Каждый отрезок труб соединяют сварными секциями вместе для формирования трубопровода. Также в магистральных трубопроводах в зависимости от области применения используют трубы, изготовленные из стекловолокна, разнообразного пластика, асбоцемента и т.д.

Для соединения прямых участков труб, а также для перехода между отрезками трубопровода разного диаметра используются специально изготовленные соединительные элементы (колена, отводы, затворы).

Для монтажа отдельных частей трубопроводов и фитингов используются специальные соединения.

Транспортируемые рабочие среды

Чаще всего трубы используют для транспортировки воды, но также их могут применять для перемещения шлама, суспензий, пара и т.д. В нефтяной отрасли трубопроводы служат для перекачивания широкого спектра углеводородов и их смесей, сильно отличающихся по химическим и физическим свойствам. Сырая нефть может транспортироваться на больше расстояния от месторождений на суше или нефтяных вышек на шельфе до терминалов, промежуточных точек и НПЗ.

По трубопроводам также передают:

  • продукты нефтепереработки, такие как бензин, авиационное топливо, керосин, дизельное топливо, мазут и др.;
  • нефтехимическое сырье: бензол, стирол, пропилен и т.д.;
  • ароматические углеводороды: ксилол, толуол, кумол и т.д.;
  • сжиженное нефтяное топливо, такое как сжиженный природный газ, сжиженный нефтяной газ, пропан (газы со стандартной температурой и давлением, но подвергнутые сжижению с применением давления);
  • углекислый газ, жидкий аммиак (транспортируются как жидкости под действием давления);
  • битум и вязкое топливо слишком вязкое для транспортировки по трубопроводам, поэтому используются дистиллятные фракции нефти для разжижения этого сырья и получения в результате смеси, которую можно транспортировать посредством трубопровода;
  • водород (на небольшие расстояния).

Формулы для определения размеров трубопровода

Пример общих формул по определению размера труб без учета возможных дополнительных факторов воздействия, таких как эрозия, взвешенные твердые частицы и прочее:

Циркуляция охлаждающей жидкости

Для трубопроводов с циркулирующей охлаждающей жидкостью предпочтительны высокие скорости. В основном это объясняется тем, что охлаждающая жидкость в охладительной башне подвергается воздействию солнечного света, что создает условия для образования водорослесодержащего слоя. Часть этого водорослесодержащего объема попадает в циркулирующую охлаждающую жидкость.

При низкой скорости потока водоросли начинают расти в трубопроводе и через некоторое время создают трудности для циркуляции охлаждающей жидкости или ее прохода в теплообменник. В этом случае рекомендуется высокая скорость циркуляции во избежание образования водорослевых заторов в трубопроводе. Обычно использование интенсивно циркулирующей охлаждающей жидкости встречается в химической промышленности, для чего требуются трубопроводы больших размеров и длины, чтобы обеспечить питание различных теплообменных аппаратов.

Понравилась статья? Поделиться с друзьями:
MoskvaTeplo.ru